

General Dysplasia of the Cerebral Arteries with Persistent Primitive Acoustic Artery and Giant Aneurysm

M. Franz, P. Berlit, and K. Tornow

Neurologische Klinik im Klinikum Mannheim der Universität Heidelberg, Theodor-Kutzer-Ufer 2–4,
D-6800 Mannheim 1, Federal Republic of Germany

Summary. A case of cerebrovascular systemic dysplasia is presented. The anomalies were: persistent primitive acoustic artery, giant aneurysm of the left internal carotid artery, aneurysm of the basilar artery, and an arteriovenous fistula. A review of the literature shows that the association of multiple malformations of cerebral vessels with a persistent primitive acoustic artery has not previously been described. Impairment of embryonic development is suggested as the origin of the malformations.

Key words: Persistent primitive acoustic artery – Giant aneurysm – Cerebrovascular dysplasia

Introduction

Carotid-basilar anastomoses are found during normal embryonic development. They disappear when the embryo reaches a length of 14 mm and are of functional significance for approximately 1 week. Normally there is involution of these vessels [4]. In rare cases these embryonic arteries persist, most frequently the primitive trigeminal artery, followed by the primitive hypoglossal artery [9, 20, 27]. Persistence of the proatlantal artery and the primitive acoustic artery has been described only rarely [11, 12, 14].

The association of a persistent embryonic carotid-basilar anastomosis with a cerebral aneurysm has been previously described [7, 10, 17], but not with persistence of the primitive acoustic artery. Few cases of arterial cerebral aneurysms with arteriovenous malformations have been observed [5, 22].

Offprint requests to: M. Franz, Mühlthalstrasse 120d, D-6900 Heidelberg, Federal Republic of Germany


In this paper we describe a case of cerebrovascular malformation with a persistent primitive acoustic artery, a giant aneurysm of the left internal carotid artery, an aneurysm of the basilar artery, and an arteriovenous fistula in the region of the left internal carotid artery, a combination apparently not previously reported.

Case Report

Over a period of 3 months, a Turkish male, age 30 years, developed weakness and a feeling of heaviness in the left arm and leg.

Fig. 1. Cranial CT scan with contrast material; giant aneurysm in the left temporo medial area; dilated right middle cerebral artery

Fig. 2. Left carotid arteriogram; giant aneurysm (arrow) and adjacent dilated internal carotid artery; distal to that an arteriovenous fistula between marginal tentorial artery left and sinus rectus (double arrow)

Fig. 3. Right carotid arteriogram; basilar artery, which is fed by persistent primitive acoustic artery (arrow)

Neurological examination revealed hemiplegia, increased tendon reflexes with permanent clonus of the patella and the ankle, and Babinski's sign of the left side. All mental functions were impaired.

The *EEG* showed fluctuating alterations of moderate degree and a focus of paroxysmal theta activity in the left temporo parietal area.

CT with and without contrast material showed a vascular malformation located mainly in the left hemisphere (Fig. 1).

Bilateral carotid angiography demonstrated a giant aneurysm situated on the supraclinoid part of the left internal carotid

artery with substantial ectasia of the adjacent vessels. The size of the aneurysm was $3 \times 5 \times 6$ cm (Fig. 2). In the final section of the right internal carotid artery and the right middle cerebral artery fusiform dilatations were seen (Fig. 3). In addition, a marginal tentorial artery on the left side with arteriovenous fistula to the sinus rectus (Fig. 2), as well as a persistent primitive acoustic artery on the right side supplying a dilated basilar artery, could be seen (Fig. 3).

Dramatic progression of the neurological deficits occurred soon after hospital admission. Because of the progressive symptomatology with a high risk of subarachnoid haemorrhage and poor long-term prognosis [26], surgical intervention was undertaken. Initially, clipping of the giant aneurysm was successful, but death occurred a few weeks later from subarachnoid haemorrhage from a small aneurysm of the basilar artery, which had been seen in postoperative angiography. This aneurysm was not found in the first arteriogram.

Discussion

Conventionally, a giant aneurysm is defined as having a diameter of more than 20 mm [16]. The aneurysm in our case was of extraordinary size, measuring $3 \times 5 \times 6$ cm. Typically for aneurysms, as also seen in this case, neurological deficits develop late in the course of the disease [18, 24]. Our patient showed a progressive hemiplegia and a psychosyndrome.

The combination of a giant aneurysm of the left internal carotid artery, an aneurysm of the basilar artery, an arteriovenous malformation (AVM) in the form of an anastomosis connecting the marginal tentorial artery and the left sinus rectus and a persistent primitive acoustic artery has, as far as we know, not previously been described in the literature. According to Anderson and Blackwood [1] and Arieti and Gray [2], embryonic maldevelopment can lead to vascular cerebral malformation. In our case the constellation of malformations suggests a systemic arterial dysplasia. The specific disturbance of embryonic development of the cerebral vascular system, which resulted in a persistent primitive acoustic artery might also be responsible for the additional vascular dysplasia [6, 25, 28].

The nature of this embryonic disorder is not known. It is possible that maldevelopment led to structural insufficiency of the arterial wall, especially of the media, inducing massive arterial ectasias and later the fusiform giant aneurysm. Trauma or perinatal infection, which has been regarded as a cause of congenital intracranial aneurysms [12], was not reported in this case. The right-sided embryonic arterioarterial anastomosis could have created a haemodynamic relief to the following fusiform dilated internal carotid and middle cerebral artery. Thus haemodynamic stress appears unlikely to be the only cause of the arterial giant aneurysm. As in our case, the occurrence of arterial aneurysms and AVM is usually

characterized by a more distal position of the AVM [5, 8, 15, 23]. This association is believed to be due to increased blood flow or haemodynamic stress in the supplying arteries of the AVM [19].

However, another arterial aneurysm was located on the basilar artery, which is not a supplying vessel of the AVM. This also implies a generalized affliction of the cerebral arterial vessel walls. Moreover, hypertension, which is frequently associated with multiple aneurysms in juveniles, was not found in our case [21]. Mere coincidence of the different malformations cannot be excluded with certainty [3]; however, the persistence of a primitive acoustic artery as a relict of embryonic development is extremely rare. In our case the persistent primitive acoustic artery could indicate a very early disorder of the cerebral arterial vascular system, which could account for the other malformations found.

References

1. Anderson RM, Blackwood W (1959) The association of arteriovenous angioma and saccular aneurysm of the arteries of the Brain. *J Pathol Bacteriol* 77: 101–110
2. Arieti S, Gray EW (1944) Progressive multiform angioma: association of a cerebral angioma, aneurysms and other vascular changes in the brain. *Arch Neurol Psychiatry* 51: 182–189
3. Boyd-Wilson JS (1959) The association of cerebral angiomas with intracranial aneurysms. *J Neurol Neurosurg Psychiatry* 22: 218–223
4. Brismar I (1976) Persistent hypoglossal artery, diagnostic criteria report of a case. *Acta Radiol (Diagn) [Stockh]* 17: 160–166
5. Cronqvist S, Troupp H (1966) Intracranial arteriovenous malformation and arterial aneurysm in the same patient. *Acta Neurol Scand* 42: 307–316
6. Fields WS (1968) The significance of persistent trigeminal artery: carotid-basilar anastomosis. *Radiology* 91: 1096–1101
7. Garza-Mercado R, Cavazos E (1984) Persistent trigeminal artery associated with intracranial arterial aneurysm. *Neurosurgery* 14: 604–607
8. Hayashi S, Arimoto T, Itakura T, Fujii T, Nishiguchi T, Komai N (1981) The association of intracranial aneurysms and arteriovenous malformation of the brain: Case report. *J Neurosurg* 55: 971–975
9. Hirahara K, Asakura T, Uetsuhara K (1981) Persistent primitive hypoglossal artery associated with intracranial aneurysm. *Neurol Surg* 9: 197–202
10. Kobayashi H, Munemoto S, Hayashi M, Yamamoto S (1984) Association of persistent hypoglossal artery, multiple intracranial aneurysms, and polycystic disease. *Surg Neurol* 21: 258–260
11. Krayenbühl H, Yasargil MG (1979) *Zerebrale Angiographie für Klinik und Praxis*, 3rd edn. Thieme, Stuttgart, pp 60–63
12. Kwak R, Kadoya S (1983) Moyamoya disease associated with persistent primitive trigeminal artery: Report of two cases. *J Neurosurg* 59: 166–171
13. Lagos JC, Riley HD (1970) Congenital internal carotid-internal jugular fistula. *J Pediatr* 77: 870–872
14. Lie TA (1968) *Congenital anomalies of the carotid arteries*. Excerpta Medica Foundation, Amsterdam
15. Miyasaka K, Wolpert SM, Prager RJ (1982) The association of cerebral aneurysms, infundibula, and intracranial arteriovenous malformations. *Stroke* 13: 196–203
16. Morley TP, Barr HWK (1968) Giant intracranial aneurysms: diagnosis, course, and management. *Clin Neurosurg* 16: 73–94
17. Murayama Y, Fujimoto N, Matsumoto K (1985) Bilateral persistent primitive hypoglossal arteries associated with a large ruptured aneurysm on one side. *Surg Neurol* 24: 498–502
18. Neumann H, Karte H (1984) Riesenaneurysmen der intrakraniellen Arterien bei Kindern und Jugendlichen. *VASA* 13: 258–261
19. Okamoto S, Handa H, Hashimoto N (1984) Location of intracranial aneurysms associated with cerebral arteriovenous malformation: Statistical analyses. *Surg Neurol* 22: 335–340
20. Orozco M, Trigueros F, Quintana F, Dierssen G (1978) Intracranial aneurysms in early childhood. *Surg Neurol* 9: 247–252
21. Ostergaard JR, Voldby B (1983) Intracranial arterial aneurysms in children and adolescents. *J Neurosurg* 58: 832–837
22. Schauseil-Zipf U, Thun F, Kellermann K, Mandl-Kramer S, auf der Haar K (1983) Intracranial arteriovenous malformations and aneurysms in childhood and adolescence. *Eur J Pediatr* 140: 260–267
23. Shenko HA, Jenkins F, Kim F (1971) Arteriovenous anomaly of the brain associated with cerebral aneurysm: Case report. *J Neurosurg* 34: 225–228
24. Synowitz HJ, Leonhard T, Unger RR, Kloppick E (1985) Das Riesenaneurysma – Manifestation, Diagnostik und Therapie. *Zbl Neurochir* 46: 11–30
25. Tanaka Y, Hara H, Momose G, Kobayashi S, Kobayashi S, Sugita K (1983) Proatlantal intersegmental artery and trigeminal artery associated with an aneurysm. *J Neurosurg* 59: 520–523
26. Whittle IR, Dorsch NW, Beser M (1984) Giant intracranial aneurysms: Diagnosis, management, and outcome. *Surg Neurol* 21: 218–230
27. Wollschläger G, Wollschläger PB (1974) The circle of Willis. In: Newton TH, Potts DG (eds) *Radiology of the skull and brain: Angiography*, vol. II, 58. Mosby, St. Louis
28. Wolpert SM (1966) The trigeminal artery and associated aneurysm. *Neurology* 16: 610–614

Received May 27, 1988